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1. INTRODUCTION

Perhaps all natural and physical systems are governed by non-linear laws of nature. The
dynamics of most of such systems can be mathematically represented by non-linear
di!erential or integral equations, which can be studied by analytical or numerical
techniques. These techniques, in many instances, can successfully explain certain
phenomena that are exclusive to non-linear systems. One such phenomenon is the limit
cycle (periodic) behavior of systems. Limit cycles can be considered as both desirable and
unwanted responses of systems. For instance, oscillators (see, e.g., reference [1]) or certain
types of lasers, such as self-pulsatig lasers (see, e.g., reference [2]), are expected to exhibit
limit cycle behavior. However, in a positioning system, limit cycles are certainly unwanted
and should be suppressed (see, e.g., reference [3]). In the past decades, researchers have
devised techniques to suppress limit cycles in non-linear systems: see, e.g., references [4}11]
and the references therein.

In this note, it is shown that an e!ective means of suppressing e!ects of non-linearities,
and consequently possible limit cycles in a class of non-linear systems, is the application of
disturbance observers. Disturbance observers are useful tools that were originally proposed
in references [12, 13] as means of estimating disturbances to linear systems and cancelling
them subsequently. Later, the theory of disturbance observers was advanced in reference
[14]. Presently, disturbance observers are successfully used in achieving robust stability and
performance in motion control systems, for instance, robotic systems, high-speed machining
systems, (micro) positioning systems, disk drives; see e.g., references [15}21] and the
references therein. It appears that disturbance observers are mostly designed for linear
systems. There are some works where the application of disturbance observers to non-linear
systems is reported; see references [11, 22}27]. The present note illustrates that disturbance
observers can make members of a certain class of non-linear systems behave linearly.

The organization of the note is as follows. In section 2, the class of non-linear systems to
be studied is presented. A non-linear system in this class has the property that its output is
equal to the summation of the output of a stable single-input}single-output (SISO) linear
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time-invariant system and a bounded function of time. In section 3, a disturbance observer
is designed to estimate the e!ects of non-linearities in a system in the class under
consideration and cancel them subsequently. Upon having the non-linear e!ects cancelled,
the system behaves linearly. An example is given to show that limit cycles in a Van der
Pol-type system caused by a non-linearity can be e!ectively suppressed by a disturbance
observer. In section 4, a non-linear feedback system is considered. The system is expected to
be free of non-linear responses, such as limit cycles, and achieve desired goals, such as
tracking step inputs. By using a disturbance observer, the non-linear e!ects in the system
are suppressed. Thus, the system can be treated as a linear system for which a linear
controller can be designed to achieve the desired goals. An example is given to illustrate the
design of a controller that makes a Van der Pol-type system track step inputs.

2. NON-LINEAR SYSTEMS

In this section, a class of SISO non-linear systems is introduced. A member of this class is
represented by

G
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It is assumed that:
(A1) The pair (A, c) is completely observable.
(A2) The non-linear function f, though not exactly known, is norm bounded. More

precisely,

E f E
=
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1)i)n
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f
(R, (3)

where k
f
'0 is a constant real number.

Suppose that system (1) exhibits non-linear behavior, such as limit cycle behavior, which
is considered as undesirable. Thus, a control law has to be designed to suppress the
non-linear behavior.

Let a scalar control input l( ) ) be applied to system (1) via an in#uence (input) vector
b3Rn, thereby the system is represented as

N: G
xR (t)"Ax (t)#bv (t)#f (x (t), t), x (0)":x

0
"m

0
,

y(t)"cx (t),
(4)

for all t*0, where the state vector x (t)3Rn, the input l(t)3R, and the output y (t)3R. The
system N is shown in Figure 1. It is assumed that:

(A3) The vector b is chosen such that the pair (A, b) is completely controllable.
The control law v( ) ) is to be designed to suppress the e!ects of the vector-valued

non-linear function f. Note that, in general, it is not possible to cancel the vector
f algebraically by the vector b v( ) ). Such a cancellation, even when it is possible, is not
recommended since f is not exactly known.

With this set-up, an equivalent representation of system (4) can be obtained as follows. By
assumption (A3), it is noted that A in equations (4) can be assumed to be a Hurwitz matrix.



Figure 1. The non-linear system N represented by equation (4).
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The reason is that by assumption (A3), there exists is linear state feedback control law that
can make the coe$cient matrix of system (4) Hurwitz. Having A a Hurwitz matrix, there
exist constant real numbers M'0 and p'0, such that

Eexp(At) E
=
)M exp(!pt), (5)

for all t*0 (see, e.g., reference [28, p. 195]). This inequality is used to establish a useful
result. From equations (4), it follows that the output of the non-linear system N is

y (t)"c exp(At) x
0
#c P

t

0

exp(A (t!q)) bv(q) dq#d (t), (6)

for all t*0, where

d (t)"c P
t

0

exp (A (t!q)) f (x (q), q) d q3R. (7)

Using inequalities (3) and (5) in equation (7), it is concluded that t> d (t) is a bounded
function of time. More precisely,
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From equations (6) and (7) and inequality (8), it is concluded that the output of the
non-linear system N is equal to the summation of the output of the stable SISO linear
time-invariant system

H: G
xNQ (t)"AxN (t)#bv(t), xN (0)": xN

0
"m

0
,

yN (t)"c xN (t),
(9)

and the bounded function of time d (t) for all t*0, where the state vector xN (t)3Rn and the
output yN (t)3R. By assumptions (A1) and (A3), the representation of the system H in
equations (9) is minimal. The transfer function of H is irreducible and is given by

H(s)"c (sI
n
!A)~1 b, (10)

where I
n
denotes the n]n identity matrix.

A conclusion to be drawn from equations (6) to (10) is that the system N can be
equivalently represented by the linear system in Figure 2. This system is denoted by H

`d
.

The transfer function from v to y in H
`d

is H (s). The representation in Figure 2 has a useful
property to be exploited in the next section.



Figure 2. The system H
`d

. This system is an equivalent representation of the system N.
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3. LINEAR BEHAVIOR BY DISTURBANCE OBSERVERS

Representing the non-linear system N by the equivalent linear system H
`d

in Figure 2 is
of great advantage, because the e!ects of non-linearities in N appear as the bounded
disturbance d( ) ) in H

`d
. Therefore, if one seeks to suppress the e!ects of non-linearities in

N, then one should design a control law that suppresses the e!ect of d ( ) ) in H
`d

. The latter
can be achieved by a disturbance observer that estimates d( ) ) and cancels it subsequently.
Therefore, the goal of this section is to design a disturbance observer to make N behave
linearly and, for instance, be free of limit cycles.

A disturbance observer added to the system H
`d

is shown in Figure 3. In this "gure, H
n
(s)

represents the nominal transfer function (mathematical model) corresponding to H (s) in
equation (10). Noting that the e!ect of the initial state vector m

0
asymptotically decays to

zero by the stable transfer function c (s I
n
!A)~1, it follows that dI (t) :" y (t)!y

n
(t) is an

estimate of the disturbance d(t) as tPR. In order to implement the disturbance observer,
the "lter Q(s) is added to the system to make Q(s) H~1

n
(s) a realizable (at least a proper)

transfer function, because H~1
s

(s) is often unrealizable. A successful design of a disturbance
observer crucially depends on the design of Q(s). Due to its important role, the design of Q(s)
has been extensively studied; see, e.g., references [12, 14, 15, 21]. It turns out that Q(s) should
be a low-pass "lter of unity DC-gain. A typical form of Q(s) is

Q(s)"
+m~o

k/1
a
k
(qs)k#1

+m
k/1

a
k
(qs)k#1

, (11)

where o is at least equal to the relative degree of H
n
(s) and a

k
and q are positive real

numbers. From Figure 3, it is concluded that the output of the system is

y (s)"[1#b (1!Q(s))~1Q(s)H~1
n

(s)]~1 [c (sI
n
!A)~1 m

0
#d(s)], (12)

where y (s) and d(s) are the Laplace transforms of y( ) ) and d ( ) ), respectively. Several
comments regarding equation (12) should be made: (1) the "lter Q (s) should be designed
such that the transfer function

[1#b (1!Q(s))~1 Q (s) H~1
n

(s)]~1, (13)

is stable; (2) since Q(s) is a low-pass "lter of unity DC-gain, the e!ect of the bounded
disturbance d( ) ) in the system in Figure 3 is suppressed, and the output of the system
converges to zero.

An implementation of the disturbance observer for the system N (equivalently H
`d

) is
shown in Figure 4. The system in this "gure is denoted by N

DOB
to indicate that

a disturbance observer is added to N. The equivalence of N
DOB

and the system in Figure
3 asserts that the e!ects of non-linearities in N

DOB
are suppressed and the output of this

system converges to zero.



Figure 3. A disturbance observer added to the system H
`d

(equivalently N) to estimate d which incorporates the
e!ects of non-linearities in N. An estimate of d is dI which is cancelled subsequently.

Figure 4. The system N
DOB

. This system is N to which a disturbance observer is added.
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Next, an example is presented to illustrate the e$cacy of disturbance observers in
suppressing the e!ects of non-linearities and limit cycles in a non-linear system in the class
of systems considered in this note.

3.1. EXAMPLE: A VAN DER POL-TYPE SYSTEM

Consider the system

C
m0
1
(1)

m0
2
(t)D"C

!1 1

!1 0D C
m
1
(t)

m
2
(t)D#C

tanh (3m
1
(t))

0 D , C
m
1
(0)

m
2
(0)D"C

m
10

m
20
D , (14a)

g(t)"[1 0] C
m
1
(t)

m
2
(t)D , (14b)

for all t*0, where the states m
1
(t)3R, m

2
(t)3R, the non-zero initial state vector

[m
10

m
20

]T3R2, and the output g(t)3R. System (14) is a Van der Pol-type system (see
reference [28, Chapter 2]). It is straightforward to verify that assumptions (A1) and (A2)
hold for systems (14). Moreover, it can be shown that starting from any non-zero
[m

10
m
20

]T, system (14) exhibits limit cycle behavior (see reference [28, Chapter 2]).
Let [m

10
m
20

]T"[1 0]T. For these initial states, the output of system (14) is that depicted
in Figure 5(a) and designated by g. It is evident that g is a periodic function of time, i.e., the



Figure 5. (a) Responses of the systems N, the non-linearity-free N, and N
DOB

, designated by g, g
L
, and y

DOB
,

respectively, in the absence of measurement noise w. It is evident that y
DOB

is free of limit cycles. That is, the
disturbance observer has suppressed the e!ects of the non-linearity. (b) Response of the system N

DOB
, designated by

y
DOB

, in the presence of measurement noise w.
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system has limit cycle behavior. If there were no non-linearity in the system, i.e., tanh
(3m

1
( ) )) in equation (14a) were absent, then the system output would decay to zero

asymptotically, as shown in Figure 5(a) by g
L
.

The di!erence between g and g
L

is due to the non-linearity in system (14). It is now shown
that the e!ect of this non-linearity, and consequently limit cycle behavior, can be e!ectively
suppressed by a disturbance observer.

Let a scalar input v ( ) ) be applied to system (14) via the in#uence vector b"[0 1]T,
thereby the system is represented as

C
x0
1
(t)

xR
2
(t)D"C

!1 1

!1 0D C
x
1
(t)

x
2
(t)D#C

0

1D l(t)#C
tanh (3x

1
(t))

0 D , C
x
1
(0)

x
2
(0)D"C

1

0D , (15a)

y (t)"[1 0] C
x
1
(t)

x
2
(t)D , (15b)

for all t*0.
It is straightforward to verify that assumption (A3) holds for system (15). The linear

system H corresponding to system (15) can be obtained by neglecting the non-linear term in
equation (15a). The transfer function of this system is

H (s)"
1

s2#s#1
. (16)

The implementation of the disturbance observer for system (15) is the same as the system
N

DOB
in Figure 4, where H

n
(s)"H (s), and

Q (s)"
3000

s3#45 s2#650 s#3000
. (17)

The output of N
DOB

in the absence of measurement noise (w,0) is shown in Figure 5(a) and
is designated by y

DOB
. It is evident that y

DOB
converges to zero. That is, the disturbance

observer has successfully suppressed the e!ect of the non-linearity in the system.
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The e!ect of measurement noise w ( ) ) on the performance of the system N
DOB

is studied
next. Let w ( ) ) be band-limited white noise. The output of the system in the presence of this
source of noise is depicted in Figure 5(b) and is designated by y

DOB
. It is evident that the

system output decays to zero, however, it is noisy due to the measurement noise. Noisy
output is the price to be paid to suppress limit cycles by feedback and a disturbance
observer. Whenever there is a feedback, there is always measurement noise that a!ects the
outputs of systems adversely.

4. CONTROLLERS FOR A CLASS OF NON-LINEAR FEEDBACK SYSTEMS

In this section, based on the results of section 3, a methodology for designing controllers
for a class of non-linear feedback systems is presented. A member of this class is shown in
Figure 6 and is denoted by S (C, N). In this system, r, y, and w are, respectively, the reference
input, the output, and the measurement noise. Furthermore, the system N is that
represented in equations (4) for which assumptions (A1)}(A3) hold, and the controller
C (either linear or non-linear) is to be designed to achieve desired goals, such as tracking
step inputs. Since N is a non-linear system, there are no standard techniques for designing
C. However, having assumption (A2) satis"ed, the system S (C, N) can be equivalently
represented by the linear system in Figure 7. This system is denoted by S (C, H

`d
). Due to

the linearity of the system S (C, H
`d

), the controller C can be chosen to be a linear system
with transfer function C(s). The design of C(s) is now straightforward: set d,0 in S (C, H

`d
)

and use standard techniques from the theory of linear systems to design a C (s) by which
desired goals are achieved. Although the design of C(s) is straightforward, the e!ects of non-
linearities in the system which appear as the disturbance d ( ) ), can still cause undesirable
responses. In order to suppress such e!ects, a disturbance observer is added to the system
S(C, H

`d
). The resulting system is denoted by S (C, N

DOB
) and is shown in Figure 8. Clearly,

this system takes advantage of the linearizing e!ect of the disturbance observer and the
control input provided by C (s) to achieve the desired goals.

An example is now presented to examine how well the system S (C, N
DOB

) can track
step inputs.

4.1. EXAMPLE: A VAN DER POL-TYPE SYSTEM TRACKING STEP INPUTS

Consider the system S (C, N) where N is that represented by equations (15) and let C be an
integral (I) controller with the transfer function

C(s)"
0)36

s
. (18)
Figure 6. The non-linear feedback system S (C,N).



Figure 7. The linear feedback system S (C, H
`d

). This system is an equivalent representation of S (C, N).

Figure 8. The non-linear feedback system S (C, N
DOB

). This system is S (C,N) to which a disturbance observer is
added.
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Let the initial states of N be [0 0]T, w,0, and

r (t)"0)6, (19)

for all t*0. For this set-up, the output of the system S (C, N) is that depicted in Figure 9(a)
and designated by y. It is evident that S (C, N) exhibits limit cycle behavior. If there were no
non-linearity in the system, i.e., tanh(3x

1
( ) )) in equation (15a) were absent, then the system

output would be that in Figure 9(b) designated by y
L
. This output is the same as that of the

system S (C, H
`d

) when d,0. It should be remarked that the I controller is tuned to have
the output of the disturbance-free (d,0) S (C, H

`d
) track the step input r( )) with

satisfactory transients.
The di!erence between y and y

L
is due to the non-linearity in system (15). It is now shown

that the e!ect of this non-linearity, and consequently limit cycle behavior, can be suppressed
by a disturbance observer.

The implementation of the disturbance observer for the system S (C, N) is the same as the
system S (C, N

DOB
) in Figure 8, where H

n
(s)"H(s), and Q(s) is given in equation (17). The

output of S (C, N
DOB

) in the absence of measurement noise (w,0) is shown in Figure 9(a)
and is designated by y

DOB
. It is evident that y

DOB
tracks the step input r( )). That is, the

disturbance observer has successfully suppressed the e!ect of the non-linearity in the
system.

The e!ect of measurement noise w ( ) ) on the performance of the system S (C, N
DOB

) is
studied next. Let w( ) ) be band-limited white noise. Apply this noise together with the input
in equation (19) to the systems S (C, N), disturbance-free (d,0) S (C, H

`d
), and S (C, N

DOB
)

to obtain, respectively, y
N
, y

L
, and y

DOB
in Figure 9(b). It is evident that the output of S (C,

N
DOB

) due to the measurement noise is slightly noisy.
The input v( )) to the system N when the measurement noise is absent, is depicted in

Figure 10(a). This input when the measurement noise is present, is depicted in Figure 10(b).
It is evident that the magnitude of the input in this "gure is not large.



Figure 9. (a) Responses of the systems S (C, N), the disturbance-free (d,0) S (C, H
`d

), and S (C, N
DOB

),
designated by y, y

L
, and y

DOB
, respectively, in the absence of measurement noise w. It is evident that y

DOB
tracks the

step input of amplitude 0)6. That is, the disturbance observer has suppressed the adverse e!ects of the non-linearity.
(b) Responses of the systems S (C, N), the disturbance-free S (C, H

`d
), and S (C, N

DOB
), designated by y, y

L
, and

y
DOB

, respectively, in the presence of measurement noise w.
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An important remark regarding the design of disturbance observers and "lters Q (s) is as
follows. It is possible to choose a very fast Q (s) by placing its poles far to the left of the
imaginary axis of the complex plane. By doing so, the e!ects of non-linearities in the system
are completely concelled. For instance, Q(s) in the example of section 4.1 has its poles at
!10, !15, and !20. If the poles of Q(s) were placed much farther to the left of the
imaginary axis of the complex plane, then the outputs y

L
and y

DOB
in Figure 9(a) would

overlap. A fast Q(s) is the best choice, however, as long as there is no measurement noise. In
the presence of noise, if a very fast Q (s) is chosen, then the magnitude of the control input
v ( )) to the system N would be extremely large. Thus, there is a trade o! between complete
cancellation of the e!ects of non-linearities in a system and the magnitude of the required
control. In section 4.1, the "lter Q(s) is only moderately fast. Therefore, the outputs y

L
and

y
DOB

do not overlap. However, in the presence of measurement noise, the magnitude of the
control v( )) is reasonably small as shown in Figure 10(b).

5. CONCLUSIONS

In this note, a class of single-input}single-output (SISO) non-linear systems is considered.
A non-linear system in this class has the property that its output is equal to the summation
of the output of a stable SISO linear time-invariant system and a bounded function of time.
A disturbance observer is designed to estimate the e!ects of non-linearities in the system
and cancel them subsequently. The disturbance observer is thus able to make the non-linear
system behave linearly and, for instance, be free of limit cycle behavior. An example is given
to show how limit cycles in a Van der Pol-type system caused by non-linearities can be
e!ectively suppressed by a disturbance observer.

Furthermore, a methodology for designing controllers for a class of non-linear feedback
systems is presented. The designed controllers consist of two parts: a disturbance observer
by which the e!ects of non-linearities are suppressed and a linear controller to have the
system achieve desired goals.

Two remarks are made regarding the design of disturbance observers and classes of
non-linear systems: (1) there are some non-linear systems that satisfy assumption (A2) and



Figure 10. (a) Control input applied to the system N in the absence of measurement noise w. (b) Control input
applied to the system N in the presence of measurement noise w. It is evident that the magnitude of the applied
control input is reasonably small.
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exhibit chaos. By designing disturbance observers, it is possible to suppress chaotic
behavior in such systems; (2) there are some non-linear systems that do not satisfy
assumption (A2), such as the standard Van der Pol oscillator (see, e.g., reference [29,
Chapter 11]); however, the boundedness of their outputs can be inferred by some other
means. By designing disturbance observers, it is possible to suppress the e!ects of non-
linearities in such systems.

It is interesting to note that disturbance observers are linear systems, but yet they are able
to suppress the e!ects of non-linearities.
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